A Statistical Description of Plant Shoot Architecture.

نویسندگان

  • Adam Conn
  • Ullas V Pedmale
  • Joanne Chory
  • Charles F Stevens
  • Saket Navlakha
چکیده

Plant architectures can be characterized statistically by their spatial density function, which specifies the probability of finding a branch at each location in the territory occupied by a plant. Using high-precision 3D scanning, we analyzed 557 plant shoot architectures, representing three species, grown across three to five environmental conditions, and through 20-30 developmental time points. We found two elegant properties in the spatial density functions of these architectures: all functions could be nearly modified in one direction without affecting the density in orthogonal directions (called "separability"), and all functions shared the same underlying shape, aside from stretching and compression (called "self-similarity"). Surprisingly, despite their striking visual diversity, we discovered that all architectures could be described as variations on a single underlying function: a Gaussian density function truncated at roughly two SDs. We also observed systematic variation in the spatial density functions across species, growth conditions, and time, which suggests functional specialization despite following the same general design form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Sorghum Reconstructions from Depth Images Identify QTL Regulating Shoot Architecture.

Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse...

متن کامل

Diversity of Maize Shoot Apical Meristem Architecture and Its Relationship to Plant Morphology

The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meri...

متن کامل

Disentangling the Intertwined Genetic Bases of Root and Shoot Growth in Arabidopsis

Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i) that the genetic bases of root growth could be intertwined...

متن کامل

Analysis of the plant architecture via tree-structured statistical models: the hidden Markov tree models.

Plant architecture is the result of repetitions that occur through growth and branching processes. During plant ontogeny, changes in the morphological characteristics of plant entities are interpreted as the indirect translation of different physiological states of the meristems. Thus connected entities can exhibit either similar or very contrasted characteristics. We propose a statistical mode...

متن کامل

Future study of Description System Architecture Approaches with Emphasis on Strategic Management

Systems Architecture is a generic discipline to handle objects (existing or to be created) called systems, in a way that supports reasoning about the structural properties of these objects. Systems Architecture is a response to the conceptual and practical difficulties of the description and the design of complex systems. Systems Architecture is a generic discipline to handle objects (existin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current biology : CB

دوره 27 14  شماره 

صفحات  -

تاریخ انتشار 2017